AP Chemistry Equations & Constants

Throughout the test the following symbols have the definitions specified unless otherwise noted.

L, mL = liter(s), milliliter(s) g = gram(s) nm = nanometer(s) atm = atmosphere(s)	mm Hg = millimeters of mercury J, kJ = joule(s), kilojoule(s) V = volt(s) mol = mole(s)
ATOMIC STRUCTURE $E = hv$ $c = \lambda v$	$E = \text{energy}$ $\nu = \text{frequency}$ $\lambda = \text{wavelength}$ Planck's constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$ Electron charge, $e = -1.602 \times 10^{-19}$ coulomb
EQUILIBRIUM $K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, \text{ where } a \text{ A} + b \text{ B} \rightleftharpoons c \text{ C} + d \text{ D}$ $K_{p} = \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$ $K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$ $K_{b} = \frac{[OH^{-}][HB^{+}]}{[B]}$ $K_{w} = [H^{+}][OH^{-}] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$ $= K_{a} \times K_{b}$ $pH = -\log[H^{+}], pOH = -\log[OH^{-}]$ $14 = pH + pOH$ $pH = pK_{a} + \log\frac{[A^{-}]}{[HA]}$ $pK_{a} = -\log K_{a}, pK_{b} = -\log K_{b}$	Equilibrium Constants K_c (molar concentrations) K_p (gas pressures) K_a (weak acid) K_b (weak base) K_w (water)
KINETICS $\ln[A]_{t} - \ln[A]_{0} = -kt$ $\frac{1}{[A]_{t}} - \frac{1}{[A]_{0}} = kt$ $t_{1/2} = \frac{0.693}{k}$	k = rate constant t = time $t_{1/2}$ = half-life

GASES, LIQUIDS, AND SOLUTIONS

$$PV = nRT$$

$$P_A = P_{\text{total}} \times X_A, \text{ where } X_A = \frac{\text{moles } A}{\text{total moles}}$$

$$P_{total} = P_A + P_B + P_C + \dots$$

$$n = \frac{m}{M}$$

$$K = ^{\circ}C + 273$$

$$D = \frac{m}{V}$$

$$KE \text{ per molecule} = \frac{1}{2}mv^2$$
Molarity, M = moles of solute per liter of solution
$$A = abc$$

P = pressureV =volume T = temperaturen = number of moles m = massM = molar massD = densityKE = kinetic energy v = velocity A = absorbancea = molar absorptivityb = path lengthc = concentrationGas constant, $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ $= 0.08206 \text{ L} \text{ atm mol}^{-1} \text{ K}^{-1}$ $= 62.36 \text{ L torr mol}^{-1} \text{ K}^{-1}$ 1 atm = 760 mm Hg= 760 torrSTP = 0.00 °C and 1.000 atm

THERMOCHEMISTRY/ ELECTROCHEMISTRY

$q = mc\Delta T$
$\Delta S^{\circ} = \sum S^{\circ}$ products $-\sum S^{\circ}$ reactants
$\Delta H^{\circ} = \sum \Delta H_f^{\circ} \text{ products } -\sum \Delta H_f^{\circ} \text{ reactants}$
$\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products } -\sum \Delta G_{f}^{\circ} \text{ reactants}$
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$= -RT \ln K$
$= -n F E^{\circ}$
$I = \frac{q}{t}$

q = heat m = mass c = specific heat capacity T = temperature $S^{\circ} = standard entropy$ $H^{\circ} = standard enthalpy$ $G^{\circ} = standard free energy$ n = number of moles $E^{\circ} = standard reduction potential$ I = current (amperes) q = charge (coulombs) t = time (seconds)Faraday's constant, F = 96,485 coulombs per mole of electrons $1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$

-				PE	SIOI	OIC	TAB	ILE .	OF]	THE	EL	ENIE	ELZ.	7			6
																	1
H																	He
1.008																	4.00
e	4											5	9	7	8	6	10
Li	Be											B	J	Z	0	Ч	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	C	\mathbf{Ar}
22.99	24.30											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ï	Λ	Cr	Mn	Fe	ů	Ż	Cu	Zn	Ga	Ge	\mathbf{As}	Se	\mathbf{Br}	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
$\mathbf{R}\mathbf{b}$	\mathbf{Sr}	Υ	$\mathbf{Z}\mathbf{r}$	Νb	Mo	Лc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.91	131.29
55	56	57	72	73	74	75	76	ΤT	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Ηf	Ta	M	Re	õ	Ir	Pt	Au	Hg	I	\mathbf{Pb}	Bi	$\mathbf{P_0}$	At	$\mathbf{R}\mathbf{n}$
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.2	195.08	196.97	200.59	204.38	207.2	203.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	R_{g}							
(223)	226.02	227.03	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)							
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
$^{*}Lanth$	nanide Se	eries	Ce	Pr	ΡŊ	Pm	Sm	Eu	Gd	Πb	Dy	H ₀	Er	Tm	Υb	Lu	
			140.12	140.91	144.24	(145)	150.4	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
			90	91	92	93	94	95	96	67	98	66	100	101	102	103	
†Ac	tinide Se	eries	Τh	Pa	Ŋ	Νp	Pu	Am	Cm	Bk	Cf	\mathbf{Es}	Fm	Md	No	\mathbf{Lr}	
			232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	